High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ 1. Solve: [tex]\frac{3}{5} + \frac{1}{3}[/tex]

2. Write the following fractions in ascending order: [tex]\frac{1}{5}, \frac{5}{10}, \frac{18}{20}, \frac{7}{10}, \frac{4}{5}[/tex]

3. Complete the equation: [tex]\frac{3}{14} = \frac{\_}{70}[/tex]

4. Solve: [tex]\frac{3}{4} - \frac{1}{3}[/tex]

Answer :

Below is a detailed step-by-step solution.

--------------------------------------------------

1. Add
  [tex]$$\frac{3}{5}+\frac{1}{3}.$$[/tex]

  To add the fractions, we first find a common denominator. The least common denominator of 5 and 3 is 15. Rewrite each fraction:

  [tex]$$\frac{3}{5}=\frac{3\times3}{5\times3}=\frac{9}{15}, \qquad \frac{1}{3}=\frac{1\times5}{3\times5}=\frac{5}{15}.$$[/tex]

  Now add the numerators:

  [tex]$$\frac{9}{15}+\frac{5}{15}=\frac{9+5}{15}=\frac{14}{15}.$$[/tex]

  The sum is [tex]$\displaystyle \frac{14}{15}$[/tex], which is approximately [tex]$0.93333\ldots$[/tex].

--------------------------------------------------

2. Order the fractions
  [tex]$$\frac{1}{5},\; \frac{5}{10},\; \frac{18}{20},\; \frac{7}{10},\; \frac{4}{5}$$[/tex]
  in ascending order.

  First, simplify and convert them to their simplest forms or decimal equivalents:

  - [tex]$$\frac{1}{5}$$[/tex] remains as is. Its decimal equivalent is [tex]$0.2$[/tex].
  - [tex]$$\frac{5}{10}$$[/tex] simplifies to [tex]$$\frac{1}{2}$$[/tex], equivalent to [tex]$0.5$[/tex].
  - [tex]$$\frac{18}{20}$$[/tex] simplifies by dividing numerator and denominator by [tex]$2$[/tex] to [tex]$$\frac{9}{10}$$[/tex], which is [tex]$0.9$[/tex].
  - [tex]$$\frac{7}{10}$$[/tex] remains as is, which is [tex]$0.7$[/tex].
  - [tex]$$\frac{4}{5}$$[/tex] remains as is, which is [tex]$0.8$[/tex].

  Now, list the decimal values in ascending order:
  [tex]$$0.2,\quad 0.5,\quad 0.7,\quad 0.8,\quad 0.9.$$[/tex]

  These correspond to:

  [tex]$$\frac{1}{5},\quad \frac{1}{2},\quad \frac{7}{10},\quad \frac{4}{5},\quad \frac{9}{10}.$$[/tex]

--------------------------------------------------

3. Solve the proportion
  [tex]$$\frac{3}{14}=\frac{x}{70}.$$[/tex]

  To find [tex]$x$[/tex], cross-multiply:

  [tex]$$14x=3\times70.$$[/tex]

  Calculating the right side:

  [tex]$$3 \times 70 = 210.$$[/tex]

  Now solve for [tex]$x$[/tex]:

  [tex]$$x=\frac{210}{14}=15.$$[/tex]

  Thus, [tex]$x=15$[/tex].

--------------------------------------------------

4. Subtract
  [tex]$$\frac{3}{4}-\frac{1}{3}.$$[/tex]

  Find a common denominator; the least common denominator for [tex]$4$[/tex] and [tex]$3$[/tex] is [tex]$12$[/tex]. Rewrite each fraction:

  [tex]$$\frac{3}{4}=\frac{3\times3}{4\times3}=\frac{9}{12}, \qquad \frac{1}{3}=\frac{1\times4}{3\times4}=\frac{4}{12}.$$[/tex]

  Now perform the subtraction:

  [tex]$$\frac{9}{12}-\frac{4}{12}=\frac{9-4}{12}=\frac{5}{12}.$$[/tex]

  The result is [tex]$\displaystyle \frac{5}{12}$[/tex], which is approximately [tex]$0.41667\ldots$[/tex].

--------------------------------------------------

Final Answers:

1. [tex]$$\frac{3}{5}+\frac{1}{3}=\frac{14}{15}\qquad (\approx 0.93333)$$[/tex]
2. The ascending order is: [tex]$$\frac{1}{5},\quad \frac{1}{2},\quad \frac{7}{10},\quad \frac{4}{5},\quad \frac{9}{10}.$$[/tex]
3. [tex]$$\frac{3}{14}=\frac{15}{70}\quad \text{(i.e., }x=15\text{)}.$$[/tex]
4. [tex]$$\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\qquad (\approx 0.41667).$$[/tex]