College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ 1. Let [tex]f(x) = 3x^4 + 2[/tex]. What is the average rate of change on the interval [tex][-2, 3][/tex]?

A. 39
B. 59
C. 243
D. 45

2. What is the instantaneous rate of change of [tex]f(x) = 2x^3 - 3[/tex] at [tex]x = 2[/tex]?

A. 24
B. 21
C. 27
D. 3

3. Let [tex]y = (x^3 + 3)^2[/tex]. Then [tex]\frac{d y}{d x} =[/tex]

A. [tex]6x^7 + 18x^2 + 18x[/tex]
B. [tex]6x^5 + 18x^2[/tex]
C. [tex]6x^5 + 18x^2 + 18[/tex]
D. [tex]x^5 + 6x - 18[/tex]

4. Let [tex]f(x) = x^3 + 3x[/tex]. Then [tex]f^{\prime}(2) =[/tex]

A. 12
B. 15
C. 0
D. 14

5. What is the instantaneous rate of change of [tex]f(x) = 6x^2 - 3[/tex] at [tex]x = 2[/tex]?

A. 24
B. 21
C. 27
D. 3

6. If [tex]f(5) = -2[/tex], [tex]f^{\prime}(5) = 2[/tex], [tex]g^{\prime}(4) = 5[/tex], [tex]g(4) = 3[/tex] and [tex]F(x) = f(x^2 + 4x)g(3x + 1)[/tex], then what is [tex]F^{\prime}(1)[/tex]?

A. 6
B. 6
C. 36

Answer :

Below is a complete step‐by‐step explanation for solving each part of the problem.

─────────────────────────────
. Average Rate of Change of
[tex]\[
f(x)=3x^4+2
\][/tex]
on the interval [tex]\([-2,3]\)[/tex]:

1. First compute the value of the function at the endpoints.

 • When [tex]\( x=-2 \)[/tex]:
[tex]\[
f(-2)=3(-2)^4+2=3\cdot16+2=48+2=50.
\][/tex]

 • When [tex]\( x=3 \)[/tex]:
[tex]\[
f(3)=3(3)^4+2=3\cdot81+2=243+2=245.
\][/tex]

2. The average rate of change over [tex]\([-2,3]\)[/tex] is given by:
[tex]\[
\text{Average Rate} = \frac{f(3)-f(-2)}{3-(-2)}=\frac{245-50}{5}=\frac{195}{5}=39.
\][/tex]

─────────────────────────────
. Instantaneous Rate of Change of
[tex]\[
f(x)=2x^3-3
\][/tex]
at [tex]\(x=2\)[/tex]:

1. The derivative [tex]\(f'(x)\)[/tex] is:
[tex]\[
f'(x)=\frac{d}{dx}\left(2x^3-3\right)=6x^2.
\][/tex]

2. Evaluating at [tex]\(x=2\)[/tex]:
[tex]\[
f'(2)=6(2)^2=6\cdot4=24.
\][/tex]

─────────────────────────────
. Derivative of
[tex]\[
y=(x^3+3)^2
\][/tex]

1. Let
[tex]\[
u(x)=x^3+3.
\][/tex]
Then [tex]\(y=u^2\)[/tex].

2. Using the chain rule:
[tex]\[
\frac{dy}{dx}=2u\cdot\frac{du}{dx}.
\][/tex]

3. Compute [tex]\(u'(x)\)[/tex]:
[tex]\[
u'(x)=\frac{d}{dx}\left(x^3+3\right)=3x^2.
\][/tex]

4. Substitute back:
[tex]\[
\frac{dy}{dx}=2(x^3+3)\cdot 3x^2=6x^2(x^3+3)=6x^5+18x^2.
\][/tex]

─────────────────────────────
. Instantaneous Rate of Change of
[tex]\[
f(x)=x^3+3x
\][/tex]
at [tex]\(x=2\)[/tex]:

1. Compute the derivative:
[tex]\[
f'(x)=\frac{d}{dx}\left(x^3+3x\right)=3x^2+3.
\][/tex]

2. Evaluate at [tex]\(x=2\)[/tex]:
[tex]\[
f'(2)=3(2)^2+3=3\cdot4+3=12+3=15.
\][/tex]

─────────────────────────────
. Instantaneous Rate of Change of
[tex]\[
f(x)=6x^2-3
\][/tex]
at [tex]\(x=2\)[/tex]:

1. The derivative is:
[tex]\[
f'(x)=\frac{d}{dx}\left(6x^2-3\right)=12x.
\][/tex]

2. Evaluating at [tex]\(x=2\)[/tex]:
[tex]\[
f'(2)=12\cdot2=24.
\][/tex]

─────────────────────────────
. Derivative of
[tex]\[
F(x)=f(x^2+4x) \cdot g(3x+1)
\][/tex]
at [tex]\(x=1\)[/tex], given that:

[tex]\[
f(5)=-2,\quad f'(5)=2,\quad g(4)=3,\quad g'(4)=5.
\][/tex]

1. Define two functions:
  – [tex]\(u(x)=x^2+4x\)[/tex] so that [tex]\(f\)[/tex] is evaluated at [tex]\(u(x)\)[/tex].
  – [tex]\(v(x)=3x+1\)[/tex] so that [tex]\(g\)[/tex] is evaluated at [tex]\(v(x)\)[/tex].

2. At [tex]\(x=1\)[/tex]:
  • [tex]\(u(1)=1^2+4(1)=1+4=5\)[/tex].
  • [tex]\(v(1)=3(1)+1=3+1=4\)[/tex].

3. Compute the derivatives:
  • For [tex]\(u(x)\)[/tex]:
[tex]\[
u'(x)=2x+4\quad\text{thus}\quad u'(1)=2\cdot1+4=6.
\][/tex]
  • For [tex]\(v(x)\)[/tex]:
[tex]\[
v'(x)=3\quad\text{(a constant)}.
\][/tex]

4. Using the product rule and chain rule, the derivative [tex]\(F'(x)\)[/tex] is:
[tex]\[
F'(x)=f'(u(x))\cdot u'(x)\cdot g(v(x)) + f(u(x))\cdot g'(v(x))\cdot v'(x).
\][/tex]

5. Evaluating at [tex]\(x=1\)[/tex]:
[tex]\[
F'(1)=f'(5)\cdot u'(1)\cdot g(4) + f(5)\cdot g'(4)\cdot v'(1).
\][/tex]
Substitute the given values:
[tex]\[
F'(1)=2\cdot6\cdot3+(-2)\cdot5\cdot3=36-30=6.
\][/tex]

─────────────────────────────
Summary of Answers:

1. The average rate of change is [tex]\(\boxed{39}\)[/tex].

2. The instantaneous rate of change for [tex]\(f(x)=2x^3-3\)[/tex] at [tex]\(x=2\)[/tex] is [tex]\(\boxed{24}\)[/tex].

3. The derivative of [tex]\(y=(x^3+3)^2\)[/tex] is [tex]\(\boxed{6x^5+18x^2}\)[/tex].

4. The instantaneous rate of change for [tex]\(f(x)=x^3+3x\)[/tex] at [tex]\(x=2\)[/tex] is [tex]\(\boxed{15}\)[/tex].

5. The instantaneous rate of change for [tex]\(f(x)=6x^2-3\)[/tex] at [tex]\(x=2\)[/tex] is [tex]\(\boxed{24}\)[/tex].

6. The derivative of [tex]\(F(x)=f(x^2+4x)g(3x+1)\)[/tex] at [tex]\(x=1\)[/tex] is [tex]\(\boxed{6}\)[/tex].