Answer :
To compare fractions, we first convert them to have a common denominator or convert them to decimal form. Let's tackle each pair step-by-step:
(a)
(i) Compare [tex]\frac{3}{5}[/tex] and [tex]\frac{9}{10}[/tex]:
Convert both fractions to decimal by dividing the numerator by the denominator:
[tex]\frac{3}{5} = 0.6[/tex] and [tex]\frac{9}{10} = 0.9[/tex].
Since 0.6 < 0.9, [tex]\frac{3}{5} < \frac{9}{10}[/tex].
(b)
(i) Compare [tex]\frac{6}{7}[/tex] and [tex]\frac{9}{10}[/tex]:
Convert both to decimal:
[tex]\frac{6}{7} \approx 0.857[/tex] and [tex]\frac{9}{10} = 0.9[/tex].
Since 0.857 < 0.9, [tex]\frac{6}{7} < \frac{9}{10}[/tex].
(ii) Compare [tex]\frac{3}{8}[/tex] and [tex]\frac{9}{16}[/tex]:
Convert to decimals:
[tex]\frac{3}{8} = 0.375[/tex] and [tex]\frac{9}{16} = 0.5625[/tex].
So, [tex]\frac{3}{8} < \frac{9}{16}[/tex].
(iii) Compare [tex]8[/tex] and [tex]\frac{14}{3}[/tex]:
First convert [tex]\frac{14}{3}[/tex] to a mixed number: [tex]4\frac{2}{3}[/tex] which is approximately 4.67 in decimal.
Since 8 > 4.67, 8 > [tex]\frac{14}{3}[/tex].
(iii) Compare [tex]\frac{21}{25}[/tex] and [tex]\frac{18}{20}[/tex]:
Convert to decimals:
[tex]\frac{21}{25} = 0.84[/tex] and [tex]\frac{18}{20} = 0.9[/tex].
Therefore, [tex]\frac{21}{25} < \frac{18}{20}[/tex].
(iii) Compare [tex]4\frac{2}{4}[/tex] and [tex]9\frac{3}{5}[/tex]:
Convert to improper fractions:
[tex]4\frac{2}{4} = 4.5[/tex] and [tex]9\frac{3}{5} = 9.6[/tex].
Clearly, 4.5 < 9.6.
(a) Arrange [tex]\frac{5}{6}[/tex], [tex]\frac{7}{16}[/tex], [tex]\frac{3}{8}[/tex], and [tex]\frac{6}{12}[/tex] in ascending order:
Convert each to decimal:
- [tex]\frac{5}{6} \approx 0.833[/tex]
- [tex]\frac{7}{16} = 0.4375[/tex]
- [tex]\frac{3}{8} = 0.375[/tex]
- [tex]\frac{6}{12} = 0.5[/tex]
Ordering them: [tex]\frac{3}{8} < \frac{7}{16} < \frac{6}{12} < \frac{5}{6}[/tex].
(b) Arrange the fractions in descending order:
(i) [tex]\frac{1}{5}[/tex], [tex]\frac{3}{7}[/tex], [tex]\frac{7}{10}[/tex] in descending order:
Convert to decimals:
- [tex]\frac{1}{5} = 0.2[/tex]
- [tex]\frac{3}{7} \approx 0.429[/tex]
- [tex]\frac{7}{10} = 0.7[/tex]
Ordering them: [tex]\frac{7}{10} > \frac{3}{7} > \frac{1}{5}[/tex].
(ii) [tex]\frac{2}{9}[/tex], [tex]\frac{5}{6}[/tex], [tex]\frac{7}{12}[/tex] in descending order:
Convert to decimals:
- [tex]\frac{2}{9} \approx 0.222[/tex]
- [tex]\frac{5}{6} \approx 0.833[/tex]
- [tex]\frac{7}{12} \approx 0.583[/tex]
Ordering them: [tex]\frac{5}{6} > \frac{7}{12} > \frac{2}{9}[/tex].