Answer :
Sure, let's solve the question step by step.
We are given the function [tex]\( f(x) = x^2 \)[/tex]. We need to find the values of this function for different inputs.
### a. Find [tex]\( f(1) \)[/tex]
1. Plug [tex]\( x = 1 \)[/tex] into the function:
[tex]\[
f(1) = 1^2
\][/tex]
2. Calculate the square of 1:
[tex]\[
1^2 = 1
\][/tex]
So,
[tex]\[
f(1) = 1
\][/tex]
### b. Find [tex]\( f(-3) \)[/tex]
1. Plug [tex]\( x = -3 \)[/tex] into the function:
[tex]\[
f(-3) = (-3)^2
\][/tex]
2. Calculate the square of [tex]\(-3\)[/tex]:
[tex]\[
(-3)^2 = 9
\][/tex]
So,
[tex]\[
f(-3) = 9
\][/tex]
### c. Find [tex]\( f(t) \)[/tex]
1. Plug [tex]\( x = t \)[/tex] into the function:
[tex]\[
f(t) = t^2
\][/tex]
Since [tex]\( t \)[/tex] is a variable, we just leave the expression in terms of [tex]\( t \)[/tex]:
So,
[tex]\[
f(t) = t^2
\][/tex]
### Summary of Results
- [tex]\( f(1) = 1 \)[/tex]
- [tex]\( f(-3) = 9 \)[/tex]
- [tex]\( f(t) = t^2 \)[/tex]
These are the values of the function for the given inputs.
We are given the function [tex]\( f(x) = x^2 \)[/tex]. We need to find the values of this function for different inputs.
### a. Find [tex]\( f(1) \)[/tex]
1. Plug [tex]\( x = 1 \)[/tex] into the function:
[tex]\[
f(1) = 1^2
\][/tex]
2. Calculate the square of 1:
[tex]\[
1^2 = 1
\][/tex]
So,
[tex]\[
f(1) = 1
\][/tex]
### b. Find [tex]\( f(-3) \)[/tex]
1. Plug [tex]\( x = -3 \)[/tex] into the function:
[tex]\[
f(-3) = (-3)^2
\][/tex]
2. Calculate the square of [tex]\(-3\)[/tex]:
[tex]\[
(-3)^2 = 9
\][/tex]
So,
[tex]\[
f(-3) = 9
\][/tex]
### c. Find [tex]\( f(t) \)[/tex]
1. Plug [tex]\( x = t \)[/tex] into the function:
[tex]\[
f(t) = t^2
\][/tex]
Since [tex]\( t \)[/tex] is a variable, we just leave the expression in terms of [tex]\( t \)[/tex]:
So,
[tex]\[
f(t) = t^2
\][/tex]
### Summary of Results
- [tex]\( f(1) = 1 \)[/tex]
- [tex]\( f(-3) = 9 \)[/tex]
- [tex]\( f(t) = t^2 \)[/tex]
These are the values of the function for the given inputs.