College

Which of the following shows the polynomial below written in descending order?

[tex]3x^3 + 9x^7 - x + 4x^{12}[/tex]

A. [tex]3x^3 + 4x^{12} + 9x^7 - x[/tex]

B. [tex]9x^7 + 4x^{12} + 3x^3 - x[/tex]

C. [tex]4x^{12} + 3x^3 - x + 9x^7[/tex]

D. [tex]4x^{12} + 9x^7 + 3x^3 - x[/tex]

Answer :

To write a polynomial in descending order, we order the terms from the one with the highest power of [tex]\( x \)[/tex] to the lowest. Let's look at the polynomial provided:

[tex]\[ 3x^3 + 9x^7 - x + 4x^{12} \][/tex]

Here are the steps to arrange it in descending order:

1. Identify the terms: The polynomial has four terms: [tex]\( 3x^3 \)[/tex], [tex]\( 9x^7 \)[/tex], [tex]\(-x\)[/tex], and [tex]\( 4x^{12} \)[/tex].

2. Identify the exponent of each term:
- [tex]\( 4x^{12} \)[/tex] has an exponent of 12.
- [tex]\( 9x^7 \)[/tex] has an exponent of 7.
- [tex]\( 3x^3 \)[/tex] has an exponent of 3.
- [tex]\( -x \)[/tex] is equivalent to [tex]\(-1x^1\)[/tex], so it has an exponent of 1.

3. Arrange the terms by descending exponent values:
- The highest exponent is 12, so [tex]\( 4x^{12} \)[/tex] comes first.
- Next is the exponent 7, so [tex]\( 9x^7 \)[/tex] comes second.
- Then the exponent 3, so [tex]\( 3x^3 \)[/tex] comes third.
- Finally, the exponent 1, so [tex]\(-x\)[/tex] comes last.

4. Write the polynomial in descending order:
- Combine these: [tex]\( 4x^{12} + 9x^7 + 3x^3 - x \)[/tex]

Therefore, the polynomial written in descending order is:

[tex]\[ 4x^{12} + 9x^7 + 3x^3 - x \][/tex]

This matches option D from the provided choices.