Answer :
Sure! Let's determine which expressions are equivalent to [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex] using the distributive property.
Step 1: Apply the Distributive Property
The original expression is [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex]. To apply the distributive property, we multiply [tex]\(-9\)[/tex] by each term inside the parentheses:
1. Multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3} x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3} x = -6x
\][/tex]
2. Multiply [tex]\(-9\)[/tex] by 1:
[tex]\[
-9 \times 1 = -9
\][/tex]
Step 2: Combine the Results
Putting those results together, the expression simplifies to:
[tex]\[
-6x - 9
\][/tex]
Step 3: Check the Given Options
Now, let's compare this with the given expressions:
1. [tex]\(-9\left(\frac{2}{3} x\right)+9(1)\)[/tex]: This simplifies to [tex]\(-6x + 9\)[/tex], which is not equivalent.
2. [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex]: This simplifies to [tex]\(-6x - 9\)[/tex], which matches our result.
3. [tex]\(-9\left(\frac{2}{3} x\right)+1\)[/tex]: This simplifies to [tex]\(-6x + 1\)[/tex], which is not equivalent.
4. [tex]\(-6x + 1\)[/tex]: This is not equivalent.
5. [tex]\(-6x + 9\)[/tex]: This is not equivalent.
6. [tex]\(-6x - 9\)[/tex]: This matches our result.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]
Step 1: Apply the Distributive Property
The original expression is [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex]. To apply the distributive property, we multiply [tex]\(-9\)[/tex] by each term inside the parentheses:
1. Multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3} x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3} x = -6x
\][/tex]
2. Multiply [tex]\(-9\)[/tex] by 1:
[tex]\[
-9 \times 1 = -9
\][/tex]
Step 2: Combine the Results
Putting those results together, the expression simplifies to:
[tex]\[
-6x - 9
\][/tex]
Step 3: Check the Given Options
Now, let's compare this with the given expressions:
1. [tex]\(-9\left(\frac{2}{3} x\right)+9(1)\)[/tex]: This simplifies to [tex]\(-6x + 9\)[/tex], which is not equivalent.
2. [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex]: This simplifies to [tex]\(-6x - 9\)[/tex], which matches our result.
3. [tex]\(-9\left(\frac{2}{3} x\right)+1\)[/tex]: This simplifies to [tex]\(-6x + 1\)[/tex], which is not equivalent.
4. [tex]\(-6x + 1\)[/tex]: This is not equivalent.
5. [tex]\(-6x + 9\)[/tex]: This is not equivalent.
6. [tex]\(-6x - 9\)[/tex]: This matches our result.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]