Answer :
Let's go through the problem step-by-step to find the solutions for each part:
1. Find [tex]\( m \)[/tex]:
We start with the equation [tex]\( m - 12 = 3612 \)[/tex].
- To solve for [tex]\( m \)[/tex], we add 12 to both sides:
[tex]\[
m = 3612 + 12
\][/tex]
- This gives:
[tex]\[
m = 3624
\][/tex]
2. Evaluate the Expression for [tex]\( n \)[/tex]:
Now, let's solve the equation [tex]\( 5n = 45 \)[/tex] to find [tex]\( n \)[/tex].
- Divide both sides by 5:
[tex]\[
n = \frac{45}{5}
\][/tex]
- This results in:
[tex]\[
n = 9
\][/tex]
3. Evaluate the Expression for [tex]\( p \)[/tex]:
We have the equation [tex]\( \frac{p}{7} = 3 \times 77 \)[/tex].
- First, calculate the right-hand side:
[tex]\[
3 \times 77 = 231
\][/tex]
- Next, solve for [tex]\( p \)[/tex] by multiplying both sides by 7:
[tex]\[
p = 231 \times 7
\][/tex]
- This gives:
[tex]\[
p = 1617
\][/tex]
Thus, the solutions are:
- [tex]\( m = 3624 \)[/tex]
- [tex]\( n = 9 \)[/tex]
- [tex]\( p = 1617 \)[/tex]
These values are based on the logical and step-by-step solution of the given equations.
1. Find [tex]\( m \)[/tex]:
We start with the equation [tex]\( m - 12 = 3612 \)[/tex].
- To solve for [tex]\( m \)[/tex], we add 12 to both sides:
[tex]\[
m = 3612 + 12
\][/tex]
- This gives:
[tex]\[
m = 3624
\][/tex]
2. Evaluate the Expression for [tex]\( n \)[/tex]:
Now, let's solve the equation [tex]\( 5n = 45 \)[/tex] to find [tex]\( n \)[/tex].
- Divide both sides by 5:
[tex]\[
n = \frac{45}{5}
\][/tex]
- This results in:
[tex]\[
n = 9
\][/tex]
3. Evaluate the Expression for [tex]\( p \)[/tex]:
We have the equation [tex]\( \frac{p}{7} = 3 \times 77 \)[/tex].
- First, calculate the right-hand side:
[tex]\[
3 \times 77 = 231
\][/tex]
- Next, solve for [tex]\( p \)[/tex] by multiplying both sides by 7:
[tex]\[
p = 231 \times 7
\][/tex]
- This gives:
[tex]\[
p = 1617
\][/tex]
Thus, the solutions are:
- [tex]\( m = 3624 \)[/tex]
- [tex]\( n = 9 \)[/tex]
- [tex]\( p = 1617 \)[/tex]
These values are based on the logical and step-by-step solution of the given equations.