High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Seja [tex]f[/tex] uma função do [tex]1^{\circ}[/tex] grau tal que [tex]f(2x) = 2f(x)[/tex], definida para qualquer número real. Além disso, [tex]f(9) - f(6) = 18[/tex]. Assim, [tex]f(14)[/tex] vale:

a) 28
b) 42
c) 56
d) 70
e) 84

Answer :

To solve this problem, we start by analyzing the given information about the function [tex]\( f \)[/tex].

1. We know that [tex]\( f \)[/tex] is a linear function, which can be generally written as:
[tex]\[
f(x) = ax + b
\][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.

2. Given that [tex]\( f(2x) = 2f(x) \)[/tex] for any real number [tex]\( x \)[/tex], we can plug [tex]\( f(x) = ax + b \)[/tex] into this equation:
[tex]\[
f(2x) = a(2x) + b = 2ax + b
\][/tex]
and
[tex]\[
2f(x) = 2(ax + b) = 2ax + 2b
\][/tex]

So,
[tex]\[
a(2x) + b = 2ax + 2b
\][/tex]
Equating the coefficients, we get:
[tex]\[
2ax + b = 2ax + 2b
\][/tex]
By comparing the terms, we find that the constant terms must be equal:
[tex]\[
b = 2b
\][/tex]
Simplifying this, we get:
[tex]\[
b = 0
\][/tex]

Hence, the linear function simplifies to:
[tex]\[
f(x) = ax
\][/tex]

3. We are also given that [tex]\( f(9) - f(6) = 18 \)[/tex]. Substituting the simplified form of [tex]\( f(x) = ax \)[/tex] into this:
[tex]\[
f(9) - f(6) = 9a - 6a = 3a
\][/tex]
Since [tex]\( 3a = 18 \)[/tex], we solve for [tex]\( a \)[/tex]:
[tex]\[
3a = 18
\][/tex]
[tex]\[
a = 6
\][/tex]

Therefore, the function [tex]\( f(x) \)[/tex] can now be written as:
[tex]\[
f(x) = 6x
\][/tex]

4. Finally, we need to find [tex]\( f(14) \)[/tex]:
[tex]\[
f(14) = 6 \times 14 = 84
\][/tex]

Thus, the value of [tex]\( f(14) \)[/tex] is:
[tex]\[
\boxed{84}
\][/tex]

The correct answer is:
e) 84