College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Relaciona cada multiplicación con su respectivo producto.

1. [tex]4 x^5(8 x^4 + 3 x - 9)[/tex]

2. [tex]2 x^2(10 x^5 - 2 x^3 - x)[/tex]

3. [tex]\frac{20 x^7 - 4 x^5 - 2 x^3}{32 x^9 + 12 x^6 - 36 x^5}[/tex]

4. [tex]-5 x^2(7 x^5 - 4 x^4 + 2 x^3)[/tex]

5. [tex]-3 x^3(x^6 - 11 x^2 - 5)[/tex]

Products:

A. [tex]-3 x^9 + 33 x^5 + 15 x^3[/tex]

B. [tex]-35 x^7 + 20 x^6 - 10 x^5[/tex]

Answer :

Sure! Let's match each multiplication with its respective product by going through each expression step-by-step.

1. Expression 1:
Multiply: [tex]\(4x^5 \left(8x^4 + 3x - 9\right)\)[/tex].

Distributing [tex]\(4x^5\)[/tex] across each term inside the parentheses, we get:
- [tex]\(4x^5 \cdot 8x^4 = 32x^9\)[/tex]
- [tex]\(4x^5 \cdot 3x = 12x^6\)[/tex]
- [tex]\(4x^5 \cdot (-9) = -36x^5\)[/tex]

The product is:
[tex]\(32x^9 + 12x^6 - 36x^5\)[/tex].

2. Expression 2:
Multiply: [tex]\(2x^2 \left(10x^5 - 2x^3 - x\right)\)[/tex].

Distributing [tex]\(2x^2\)[/tex] across each term inside the parentheses, we get:
- [tex]\(2x^2 \cdot 10x^5 = 20x^7\)[/tex]
- [tex]\(2x^2 \cdot (-2x^3) = -4x^5\)[/tex]
- [tex]\(2x^2 \cdot (-x) = -2x^3\)[/tex]

The product is:
[tex]\(20x^7 - 4x^5 - 2x^3\)[/tex].

3. Expression 3:
Fraction: [tex]\(\frac{20x^7 - 4x^5 - 2x^3}{32x^9 + 12x^6 - 36x^5}\)[/tex].

This is already simplified in the form of a fraction, so no further simplification is needed.

The product is:
[tex]\(\frac{20x^7 - 4x^5 - 2x^3}{32x^9 + 12x^6 - 36x^5}\)[/tex].

4. Expression 4:
Multiply: [tex]\(-5x^2 \left(7x^5 - 4x^4 + 2x^3\right)\)[/tex].

Distributing [tex]\(-5x^2\)[/tex] across each term inside the parentheses, we get:
- [tex]\(-5x^2 \cdot 7x^5 = -35x^7\)[/tex]
- [tex]\(-5x^2 \cdot (-4x^4) = 20x^6\)[/tex]
- [tex]\(-5x^2 \cdot 2x^3 = -10x^5\)[/tex]

The product is:
[tex]\(-35x^7 + 20x^6 - 10x^5\)[/tex].

5. Expression 5:
Multiply: [tex]\(-3x^3 \left(x^6 - 11x^2 - 5\right)\)[/tex].

Distributing [tex]\(-3x^3\)[/tex] across each term inside the parentheses, we get:
- [tex]\(-3x^3 \cdot x^6 = -3x^9\)[/tex]
- [tex]\(-3x^3 \cdot (-11x^2) = 33x^5\)[/tex]
- [tex]\(-3x^3 \cdot (-5) = 15x^3\)[/tex]

The product is:
[tex]\(-3x^9 + 33x^5 + 15x^3\)[/tex].

So, each expression is matched with its product as calculated above.