High School

La fórmula [tex]F(C)=\frac{9}{5} C+32[/tex] calcula la temperatura en grados Fahrenheit, dada una temperatura en grados Celsius.

Puedes encontrar una ecuación para la temperatura en grados Celsius para una temperatura dada en grados Fahrenheit encontrando la función inversa.

El inverso de [tex]F(C)=\frac{9}{5} C+32[/tex] es [tex]C(F)=\square \square F[/tex].

Answer :

Sure! Let's find the inverse of the function [tex]\( F(C) = \frac{9}{5} C + 32 \)[/tex], which converts a temperature from Celsius to Fahrenheit.

To find the inverse, we need to solve for [tex]\( C \)[/tex] in terms of [tex]\( F \)[/tex]. Here's how we can do it step by step:

1. Start with the original function:
[tex]\[
F = \frac{9}{5} C + 32
\][/tex]

2. Isolate the term with [tex]\( C \)[/tex]:
To do this, subtract 32 from both sides:
[tex]\[
F - 32 = \frac{9}{5} C
\][/tex]

3. Solve for [tex]\( C \)[/tex]:
Now, to get [tex]\( C \)[/tex] by itself, multiply both sides by the reciprocal of [tex]\(\frac{9}{5}\)[/tex], which is [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[
C = \frac{5}{9} (F - 32)
\][/tex]

Now we have expressed [tex]\( C \)[/tex] in terms of [tex]\( F \)[/tex], which is the inverse function. Therefore, the inverse function is:
[tex]\[
C(F) = \frac{5}{9} (F - 32)
\][/tex]

This function [tex]\( C(F) \)[/tex] will convert a temperature from Fahrenheit back to Celsius.