Answer :
To find the water pressure at the bottom of the container, we can use the formula:
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
1. Identify the given values:
- The total force exerted by the water is 450 newtons.
- The area of the bottom of the container is 2 square meters.
2. Substitute the given values into the formula:
[tex]\[ \text{Pressure} = \frac{450 \, \text{newtons}}{2 \, \text{square meters}} \][/tex]
3. Calculate the pressure in pascals (Pa):
[tex]\[ \text{Pressure} = 225 \, \text{Pa} \][/tex]
4. Convert the pressure from pascals to kilopascals (kPa):
Since 1 kilopascal (kPa) is equal to 1000 pascals (Pa), we convert 225 Pa to kPa by dividing by 1000:
[tex]\[ 225 \, \text{Pa} = 0.225 \, \text{kPa} \][/tex]
Thus, the water pressure at the bottom of the container is [tex]\(0.225 \, \text{kPa}\)[/tex].
The correct answer is option C) 0.225 kPa.
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
1. Identify the given values:
- The total force exerted by the water is 450 newtons.
- The area of the bottom of the container is 2 square meters.
2. Substitute the given values into the formula:
[tex]\[ \text{Pressure} = \frac{450 \, \text{newtons}}{2 \, \text{square meters}} \][/tex]
3. Calculate the pressure in pascals (Pa):
[tex]\[ \text{Pressure} = 225 \, \text{Pa} \][/tex]
4. Convert the pressure from pascals to kilopascals (kPa):
Since 1 kilopascal (kPa) is equal to 1000 pascals (Pa), we convert 225 Pa to kPa by dividing by 1000:
[tex]\[ 225 \, \text{Pa} = 0.225 \, \text{kPa} \][/tex]
Thus, the water pressure at the bottom of the container is [tex]\(0.225 \, \text{kPa}\)[/tex].
The correct answer is option C) 0.225 kPa.