College

Evaluate the function [tex]f(x) = -6^{5x + 6}[/tex] for [tex]f(-1)[/tex].

Given: [tex]f(-1) = 71[/tex]

To evaluate a function, substitute [tex]x[/tex] with the given input value.

Answer :

To evaluate the function [tex]\( f(x) = -6^{5x+6} \)[/tex] at [tex]\( x = -1 \)[/tex], we need to substitute [tex]\(-1\)[/tex] into the expression in place of [tex]\( x \)[/tex].

Here's how we can do it step-by-step:

1. Substitute the value: Replace [tex]\( x \)[/tex] with [tex]\(-1\)[/tex] in the function.
[tex]\[
f(-1) = -6^{5(-1) + 6}
\][/tex]

2. Simplify the exponent: Calculate the value inside the exponent.
[tex]\[
5(-1) + 6 = -5 + 6 = 1
\][/tex]

3. Evaluate the expression: Substitute the exponent back into the function.
[tex]\[
f(-1) = -6^1
\][/tex]

4. Simplify further: Since [tex]\( 6^1 \)[/tex] is simply [tex]\( 6 \)[/tex], we have:
[tex]\[
f(-1) = -6
\][/tex]

Thus, the evaluated result of the function [tex]\( f(x) \)[/tex] at [tex]\( x = -1 \)[/tex] is [tex]\(-6\)[/tex].