College

Efectúa la operación entre polinomios:

[tex]
\[
\left(5x^4 + 13x^2 - x + 10\right) - \left(-6x^4 + 9x^3 + 7\right)
\]
[/tex]

Choose the correct result:

A. [tex]\(11x^4 + 4x^2 - 8x + 10\)[/tex]

B. [tex]\(11x^4 + 9x^3 + 13x^2 - x + 17\)[/tex]

C. [tex]\(11x^4 + 4x^2 - x + 3\)[/tex]

D. [tex]\(11x^4 - 9x^3 + 13x^2 - x + 3\)[/tex]

Answer :

We start with the expression

[tex]$$
\left(5x^4 + 13x^2 - x + 10\right) - \left(-6x^4 + 9x^3 + 7\right).
$$[/tex]

The subtraction sign in front of the second polynomial changes the signs of each of its terms. Thus, we have

[tex]$$
5x^4 + 13x^2 - x + 10 + 6x^4 - 9x^3 - 7.
$$[/tex]

Next, we combine like terms:

1. For the [tex]$x^4$[/tex] terms:
[tex]$$
5x^4 + 6x^4 = 11x^4.
$$[/tex]
2. For the [tex]$x^3$[/tex] term, there is only one term:
[tex]$$
-9x^3.
$$[/tex]
3. For the [tex]$x^2$[/tex] term:
[tex]$$
13x^2.
$$[/tex]
4. For the [tex]$x$[/tex] term:
[tex]$$
-x.
$$[/tex]
5. For the constant terms:
[tex]$$
10 - 7 = 3.
$$[/tex]

Putting all these together, the resulting polynomial is

[tex]$$
11x^4 - 9x^3 + 13x^2 - x + 3.
$$[/tex]

Thus, the correct answer is Option 4.