High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Déterminer l'ensemble de définition [tex]D_l[/tex] de la fonction suivante:

[tex]
l(x) =
\begin{cases}
\frac{x^2+2}{x^2-25} & \text{si } x > 0 \\
x+\sqrt{x^2+x} & \text{si } x \leq 0
\end{cases}
[/tex]

Answer :

To determine the domain of the function [tex]\( l(x) \)[/tex], we need to consider each piece of the function separately and then combine their domains. The function is defined piecewise as follows:

1. [tex]\( l(x) = \frac{x^2 + 2}{x^2 - 25} \)[/tex] for [tex]\( x > 0 \)[/tex]
2. [tex]\( l(x) = x + \sqrt{x^2 + x} \)[/tex] for [tex]\( x \leq 0 \)[/tex]

Step 1: Find the domain for the first piece, [tex]\(\frac{x^2 + 2}{x^2 - 25}\)[/tex] where [tex]\(x > 0\)[/tex].

- The expression is a rational function which means it's defined for all [tex]\(x > 0\)[/tex] except where the denominator is zero.
- The denominator is zero when [tex]\( x^2 - 25 = 0 \)[/tex].
- Solving for [tex]\(x\)[/tex], we have [tex]\( x^2 = 25 \)[/tex] giving [tex]\( x = \pm 5 \)[/tex].
- Since we are only considering [tex]\( x > 0 \)[/tex], the value [tex]\( x = 5 \)[/tex] must be excluded from the domain.
- Therefore, the domain for this piece is all positive [tex]\( x \)[/tex] except [tex]\( x = 5 \)[/tex]: [tex]\( \left(0, 5\right) \cup \left(5, \infty\right) \)[/tex].

Step 2: Find the domain for the second piece, [tex]\(x + \sqrt{x^2 + x}\)[/tex] where [tex]\(x \leq 0\)[/tex].

- The expression involves a square root, which means the expression inside the root must be non-negative to ensure it's defined for real numbers.
- The condition we need to satisfy is [tex]\( x^2 + x \geq 0 \)[/tex].
- Factor the inequality: [tex]\( x(x + 1) \geq 0 \)[/tex].
- The critical points are [tex]\( x = 0 \)[/tex] and [tex]\( x = -1 \)[/tex].
- Testing intervals around these critical points, we find:
- For [tex]\( x \leq -1 \)[/tex], say [tex]\( x = -2 \)[/tex], [tex]\(x(x+1) = (-2)(-1) = 2 > 0\)[/tex], so the inequality holds.
- For [tex]\( -1 < x \leq 0 \)[/tex], say [tex]\( x = -0.5 \)[/tex], [tex]\(x(x+1) = (-0.5)(0.5) = -0.25 < 0\)[/tex], so the inequality does not hold.
- Therefore, the solution to [tex]\( x(x + 1) \geq 0 \)[/tex] for [tex]\( x \leq 0 \)[/tex] is just [tex]\( x \leq -1\)[/tex].
- The domain for this piece is [tex]\( (-\infty, 0] \)[/tex].

Step 3: Combine the domains from both pieces.

- The domain for the entire function [tex]\( l(x) \)[/tex] is the union of the two parts:
- From the first piece: [tex]\( \left(0, 5\right) \cup \left(5, \infty\right) \)[/tex]
- From the second piece: [tex]\( (-\infty, 0] \)[/tex]

Therefore, the overall domain for [tex]\( l(x) \)[/tex] is:

[tex]\[ (-\infty, 0] \cup \left(0, 5\right) \cup \left(5, \infty\right) \][/tex]