Answer :
To find the width of the rectangular room, we apply the formula for the area of a rectangle:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
We are given:
- The area of the room is [tex]\(97 \frac{1}{8}\)[/tex] square feet.
- The length of the room is [tex]\(10 \frac{1}{4}\)[/tex] feet.
We need to find the width. Let's break it down step-by-step:
1. Convert Mixed Numbers to Improper Fractions:
- The area, [tex]\(97 \frac{1}{8}\)[/tex], can be converted to an improper fraction: [tex]\(97 + \frac{1}{8} = 97.125\)[/tex].
- The length, [tex]\(10 \frac{1}{4}\)[/tex], can be similarly converted: [tex]\(10 + \frac{1}{4} = 10.25\)[/tex].
2. Calculate the Width:
- Rearrange the formula to solve for width:
[tex]\[ \text{Width} = \frac{\text{Area}}{\text{Length}} \][/tex]
- Substitute the values we converted:
[tex]\[ \text{Width} = \frac{97.125}{10.25} \][/tex]
- Calculate the division to find the width:
[tex]\[ \text{Width} \approx 9.4756 \][/tex]
So, the width of the room is approximately [tex]\(9.476\)[/tex] feet.
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
We are given:
- The area of the room is [tex]\(97 \frac{1}{8}\)[/tex] square feet.
- The length of the room is [tex]\(10 \frac{1}{4}\)[/tex] feet.
We need to find the width. Let's break it down step-by-step:
1. Convert Mixed Numbers to Improper Fractions:
- The area, [tex]\(97 \frac{1}{8}\)[/tex], can be converted to an improper fraction: [tex]\(97 + \frac{1}{8} = 97.125\)[/tex].
- The length, [tex]\(10 \frac{1}{4}\)[/tex], can be similarly converted: [tex]\(10 + \frac{1}{4} = 10.25\)[/tex].
2. Calculate the Width:
- Rearrange the formula to solve for width:
[tex]\[ \text{Width} = \frac{\text{Area}}{\text{Length}} \][/tex]
- Substitute the values we converted:
[tex]\[ \text{Width} = \frac{97.125}{10.25} \][/tex]
- Calculate the division to find the width:
[tex]\[ \text{Width} \approx 9.4756 \][/tex]
So, the width of the room is approximately [tex]\(9.476\)[/tex] feet.